Problem 1.11

Volume of a parallelepiped
Show that the volume of a parallelepiped with edges \mathbf{A}, \mathbf{B}, and \mathbf{C} is given by $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$.

Solution

Figure 1: The three vectors, \mathbf{A}, \mathbf{B}, and \mathbf{C}, are shown here.
The magnitude of the cross product of \mathbf{B} and \mathbf{C} gives the area of the parallelogram formed by \mathbf{B} and \mathbf{C}. In order to determine the volume of the parallelepiped, we have to multiply this area by the vertical height, $h . h$ can be determined by considering the cosine of the angle, ψ, in the right triangle formed by h and \mathbf{A}.

$$
\cos \psi=\frac{h}{|\mathbf{A}|}
$$

The vertical height is

$$
h=|\mathbf{A}| \cos \psi
$$

so the volume is

$$
V=|\mathbf{A}||\mathbf{B} \times \mathbf{C}| \cos \psi
$$

The product of the magnitudes and the cosine of the angle between the vectors is the definition of the dot product. Therefore, the volume of a parallelepiped with edges \mathbf{A}, \mathbf{B}, and \mathbf{C} is given by

$$
V=\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C}) .
$$

